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This work uses a method for the stochastic reconstruction of catalyst layers (CLs) proposing a scaling
method to determine effective transport properties in proton exchange membrane fuel cell (PEMFC).
The algorithm that generates the numerical grid makes use of available information before and after
manufacturing the CL. The structures so generated are characterized statistically by two-point correla-
tion functions and by the resultant pore size distribution. As an example of this method, the continuity
equation for charge transport is solved directly on the three-dimensional grid of finite control volumes
umerical simulation
orrelation functions
eterogeneous media
caling method

(FCVs), to determine effective electrical and proton conductivities of different structures. The stochastic
reconstruction and the electrical and proton conductivity of a 45 �m side size cubic sample of a CL, rep-
resented by more than 3.3 × 1012 FVCs were realized in a much shorter time compared with non-scaling
methods.

Variables studied in an example of CL structure were: (i) volume fraction of dispersed electrolyte, (ii)
total CL porosity and (iii) pore size distribution. Results for the conduction efficiency for this example are

also presented.

. Introduction

In the near future the world’s energy demand will have to be
upplied using energy sources different from fossil fuels. Within
uch scenario hydrogen fuel could be playing an important role as
n energy vector [1]. On the other hand, due to its high efficiency
nd the potential of being used in a great variety of applications,
roton exchange membrane fuel cell (PEMFC) is being a much stud-

ed and developed technology in the last two decades [2,3].
Within a PEMFC, a catalyst layer (CL) is a small and thin region

here electrochemical reactions take place as well as many trans-
ort processes, which to a large extent determine its general
erformance [4,5]. The solid phase of this component is formed by
n electronic conductor which also serves as a support for a nanos-
ructured catalyst, which should be in contact with a dispersed ionic

onductor (ionomer) to complete the reactions [6]. This CL needs
o be porous to allow the access of reactant gases entering the cell,
nd to let water formed by reactions exit the cell either in a vapor
r in a liquid phase [7,8]. The porous medium also provides a large
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active area available for larger reaction sites and the resultant larger
current [8].

In a PEMFC the catalyst is typically platinum (Pt), the support-
ing material most commonly used is carbon (C), while the ionomer
is a polymer named nafion®. These materials will be referred to
as CL’s primary components. In a PEMFC CL the reactant gases are
transported from the border between CL and the so-called gas dif-
fusion layer (GDL) up to the reacting catalytic sites through pores
formed during fabrication between the primary components. While
the catalyst has the role of promoting the proper electrochemical
reactions, the carbon collects and conducts the produced electrons
and the ionomer should conduct protons generated or consumed
by the proper reaction.

Experimental observations at the micrometer scale suggest that
the CL is formed by agglomerates in a porous matrix [6]. The concept
of agglomerates has been developed some years ago for electro-
chemical systems and it has been extensively applied to PEMFC
[9–12]. Nevertheless, obtaining information at the nanoscale is very
difficult using present experimental characterization techniques,

which do not allow for the capture of images at that scale without
modifying the original structure [13,14]. This limitation has lead to
the formulation of different theories. The most popular is the the-
ory that considers agglomerates as small spheres covered with a
thin layer of ionomer and an inside of Pt/C particles [15–18].

dx.doi.org/10.1016/j.jpowsour.2010.08.033
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:ucano@iie.org.mx
dx.doi.org/10.1016/j.jpowsour.2010.08.033


wer So

p
a
“
t
v

p
p
u
t
a
c
h

K

w
p
t

t
d
d
M
p

p
“
t
e
t
t
o
f
w
t
g

i
w
v
i

o
e
e
t
i

p
[
i
a
t
t
a
t
t
b
f
m
a
m
t
t

R. Barbosa et al. / Journal of Po

The structure and composition of a PEMFC CL define this com-
onent as a random heterogeneous material. This heterogeneity
rises from the fact that it is constituted by different phases, being
phase” an identifiable domain with its own particular properties
hat differentiate it from the rest of the other phases in the CL (i.e.
oids, other solid material, gases or liquids).

Proportionality coefficients for mass, energy and charge trans-
ort in a heterogeneous material are significantly affected by the
roperties of the phases from which this is composed, by the vol-
me fraction composition, and by the structure of such phases. For
his reason, an effective transport coefficient (ETC) is defined for
heterogeneous material as a proportionality coefficient, which

haracterizes the domain of the material. For a randomly formed
eterogeneous material with M phases, a general ETC, Ke is:

e = f (K1, K2, . . . , KM; �1, �2, . . . , �M; ˝) (1)

here subscript of variables indicates a respective phase, K is the
roportionality constant for that phase, � is the phase volume frac-
ion and ˝ is a microstructural information of the domain [19].

In literature there are different mathematical relationships
o determine ETCs [20–22]. For example, Maxwell-Garnett [21]
eveloped a relationship to determine optical properties for
iluted dispersions of uniform spheres. Later, Bruggeman extends
axwell’s model to systems with random dispersions of spherical

articles with an extended range size [22].
A more recent and powerful technique to determine effective

roperties of random heterogeneous materials, is the so-called
stochastic reconstruction”, which first applications is attributed
o Quiblier [23]. This technique is based on the computational gen-
ration of a mesh that characterizes the real microstructure of
he heterogeneous material, mathematically described by statis-
ical functions referred to as “correlation functions”. Torquato [19]
ffers a methodology to characterize microstructures, as well as
undamental theory to estimate effective properties. More recent
orks offer modifications to Torquato’s methodology to optimize

he quality in the stochastic reconstruction or to reduce conver-
ence time during computing [24–27].

The right value of ETC is indispensable for an adequate numer-
cal simulation of systems containing one or more components

ith characteristics of a heterogeneous media. An incorrect ETC
alue will alter the results and consequently it will provide a wrong
nterpretation of the transport phenomena.

On the other hand, PEMFC phenomena simulations have been
f great interest in recent years due to the obvious advantages over
xperimental techniques: (1) lower research costs, (2) it is a pow-
rful tool for the design of more efficient devices, and (3) it offers
he possibility to better understand phenomena within the fuel cell
n often unreachable places.

When the simulation objective is the prediction of gas flow field
erformance, it is common to assume the CL as a one-phase element
28–30]. Nevertheless, to detail the functioning of a CL, a mathemat-
cal approach has been used based on the assumption that a CL is

heterogeneous medium formed by agglomerates [11,31–33]. In
his case, Bruggeman’s approach is the most popular. The stochas-
ic reconstruction has been successfully used in the simulation of
PEMFC CL. Wang et al. [34] proposed a direct numerical simula-

ion (DNS) as a way to predict the CL’s transport phenomena that
ake place at the micrometer scale. Unfortunately, the large num-
er of control volumes required to detail the main elements that
orm the CL, in a computing domain that covers the whole electrode,
akes DNS an expensive computation-wise method. Recently, Kim
nd Pitsch [17] proposed a “sphere-based simulated annealing”
ethod, as well as the “lattice Boltzmann” method to reconstruct

he microstructure of the CL in a PEMFC and to determine the effec-
ive diffusivity of the structure, respectively.
urces 196 (2011) 1248–1257 1249

In this work a theoretical study of a PEMFC CL by the stochas-
tic reconstruction of its microstructure and a scaling technique is
presented. The scaling technique allows a significant reduction in
computational resources needed for simulation. Scales are defined
based on different observable structures at different order of mag-
nitude scales. The reconstruction technique employed allows the
use of information available before and after the manufacture of
CLs. The so reconstructed structures are characterized with a two-
point correlation function and its pore size distribution. Results
obtained for the effective conductivity of theoretical samples with
different nafion® content as well as different total porosity and pore
size distribution are also presented. This work includes the follow-
ing steps: (1) microstructure reconstruction at the different scale
domains; (2) scaling strategy; (3) statistical characterization of the
generated structures; and (4) analysis of ETCs by solving the charge
transport equation. This technique can also be applied to evaluate
the different structural theories.

2. Theory and calculation

In this section we describe the microstructural information and
the perceptible scales of the CL. The mathematical analysis that
conditions the grid generation (the statistical characterization and
the ETC’s determination) of a subdivided domain by n samples of
inferior length scales is also presented.

2.1. Structural information and specific scales of CL in PEMFC

Although the nanometric scale information of CLs is limited,
structural and compositional information does exist and it can be
obtained before, during and after manufacturing the electrodes.
Design parameters that are used and controlled before MEA’s man-
ufacturing typically include: (1) platinum load (�Pt) in mg Pt cm−2;
(2) ionomer load (ˇN) which is a relation of nafion® weight to total
electrode weight and (3) platinum to carbon weight ratio (�Pt),
which is characteristic of the catalytic material synthesis. From
such information and from other physical properties of its compo-
nents (densities), volume fractions of phases in CL can be calculated.

On the other hand, the solid phase volume (VS) of any mixture
is equal to the total sum of individual phase mass (m) divided by
the density (�) of each i element in the mixture, Eq. (2):

VS =
∑ mi

�i
(2)

Using design parameters (�Pt, ˇN, �Pt) in Eq. (2) gives the volume
occupied by each primary element in the solid phase of the CL. Eqs.
(3), (4) and (5) can be used to calculate platinum (VPt), carbon (VC)
and nafion (VN) volume, respectively:

VPt = VS

[(ˇN(1 + �Pt)/�Pt �N(1 − ˇN) + (1/�Pt) + (1/�Pt �C )]�Pt
(3)

VC =
(

VPt �Pt

�Pt �C

)
(4)

VN =
(

ˇN(1 + �Pt)(VPt �Pt)
(1 − ˇN)�Pt �N

)
(5)

where �Pt, �C and �N are platinum, carbon and nafion densities,
respectively.

On the other hand, Eq. (6) relates the electrode total porosity
(˚T) with the solid phase volume (VS) and the electrodes total
volume (VT)
˚T = 1 − VS

VT
= 1 −

∑
mi/�i

VT
(6)

Other important structural information that can be obtained before
manufacturing the CL is the Pt and the C particle sizes. Pt is typi-
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Fig. 1. Domains use to characterize a PEMFC CL at different scales: (a) “mesoporous” where the blue color represents the pseudo-solid phase while black the empty phase;
( e blac
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b) “agglomerate and micropores”, the blue color represents the agglomerates whil
gglomerate (∼50 nm, in blue) and ionomer (in light blue) can be distinguished. (F
he web version of the article.)

ally supported on C during catalyst material synthesis, i.e. before
anufacture of CL, which also conditions the final electrode struc-

ure. The CL manufacturing method determines to certain degree
ts final structure, but such effect is not considered in this work.
fter manufacturing the CL and using modern techniques such as
orosimetry and high resolution microscopy, one can get approx-

mate size and structure of agglomerates, total porosity and size
ore distribution. In this work we assumed that physical proper-
ies of primary components are not modified during manufacture.
his assumption is valid when the composite material is fabricated
sing physical techniques in which chemical reactions do not occur
hich is normally the case in state of the art MEA’s manufacturing

echniques. Thin layer electrode manufacturing techniques [35],
re among the most popular approaches used. Many variants to
hese techniques are reported in literature [36–40], but most of
hem involve mixing Pt/C and the ionomer in a liquid solution that
s physically homogenized. The resultant mixture (catalytic ink) is
hen deposited on a substrate. It is important to say that, regardless
he catalytic ink composition and type of substrate, the primary
lements are effectively distributed randomly (given a complete
omogenization stage).

During the manufacturing process of CLs agglomerates form
omposed of primary components plus a number of pores of a vari-
ty of sizes. These structural features of the CL allow us to define
nternal substructures at different scale levels, and with that we
an establish a scaling strategy for numerical simulation.

One way to explain these apparent structural changes at differ-
nt scale levels is by picturing yourself at infinite getting closer and
loser into the CL structure. When the vision scale is ∼50,000 nm,
ne will observe a homogeneous dispersion of mesoporous struc-
ure; for a scale of ∼5000 nm and focusing areas where mesoporous
re absent, the structure is defined by agglomerates and micro-
ores; finally at a vision scale of ∼500 nm and focusing at an
gglomerate the observer will distinguish a structure formed by a
andom distribution of Pt/C particles, ionomer and probably nano-
etric pores. This last observation actually is a hypothesis due to

he fact that available information from experimental techniques
s limited at this scale, nevertheless it is a more realistic hypothesis

ompared to the most commonly used theory where agglomerates
re considered spheres with Pt/C particles inside and covered with
thin layer of ionomer on the outside.

In Fig. 1 the previously described scales are graphically repre-
ented for a PEMFC CL. Fig. 1(a) refers to the so-called “mesoporous”
k the empty phase; (c) “inside an agglomerate” here, the Pt (∼5 nm, in red), carbon
rpretation of the references to color in this figure legend, the reader is referred to

scale with a ∼50,000 nm domain, where the blue color represents
the pseudo-solid phase while black the empty phase; Fig. 1(b) rep-
resents the “agglomerate and micropores” scale with a ∼5000 nm
domain, here the blue color represents the agglomerates while
black the empty phase; finally Fig. 1(c) refers to the “inside an
agglomerate” scale with a ∼500 nm domain where the primary ele-
ments, Pt (∼5 nm, in red), carbon agglomerate (∼50 nm, in blue) and
ionomer (in light blue) can be distinguished.

In this work the sample that simulates the inside of agglomerate
is the only one that contains the primary elements, while samples of
ascending scale contain only the sample of the immediately smaller
scale and its corresponding porosity. We define the relative poros-
ity as the volume fraction occupied by the empty spaces at that
scale, ignoring that the pseudo-solid phase (or smaller scale) also
contains some porosity. The volume fractions of the solid phase of
each sample at different scales can be related mathematically by
Eq. (7),

SR =
n∏
1

Si (7)

where SR is the volume fraction of the solid phase in the entire
CL, Si is the individual volume fraction of the solid phase in each
of the samples. By substitution of Eq. (6) in Eq. (7) we can obtain
a mathematical relation that calculates the “total” porosity in the
complete CL with the relative porosities of each of the samples (Eq.
(8)),

˚T = 1 −
n∏
1

(1 − ˚i) (8)

where ˚T represents the total porosity of the complete CL and ˚i
the relative porosity of each individual samples.

2.2. Structural reconstruction algorithm

Although the “annealing method” [19,24–27] can be applied, for
simplicity, our reconstruction method considers only one filter: the

one-point correlation function (volume fraction). Fig. 2 presents a
general flow diagram of the microstructural reconstruction algo-
rithm. When the structure of a sample is composed of more than
two phases, the subroutines (dotted line square) repeat for each
one of them, in such a manner that the structure is generated in
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ig. 2. General flow diagram of the microstructural reconstruction algorithm. The
ubroutines in the dotted line square are repeated for each reconstructed phase.

tages, where each stage corresponds to the complete generation
f a phase.

The input variables in the microstructural reconstruction algo-
ithm are: (i) platinum load (�Pt); (ii) nafion® load (ˇN); (iii) weight
ercent of carbon-supported platinum (�Pt); (iv) total porosity and
elative porosity of n − 1 samples; (v) domain and control volume
imensions at each scale; and (vi) average size of representative
lements at each scale.

The domain is fractioned in finite control volumes (FCVs), where
ach volume is identified by an index number randomly distributed
nd computer-generated by a random number generator [41].

The reconstruction method of each phase considers three forma-
ion stages: (1) the center of the representative elements at each
cale (i.e. primary elements, agglomerates, mesoporous, isles, etc.)
re stochastically distributed; (2) around such centers and in one
ingle step, a previously configured specific tridimensional geom-
try is generated (i.e. amorphous sphere structures, ellipses, tubes,
tc.); (3) in a random manner the surroundings are filled until the
equired volume fraction is fulfilled.

The centers of such structures are denominated seeds and the
umber of seeds distributed in the computing domain, is calculated
sing Eq. (9),

S = VCTi

VCUi
(9)

here NS in the integer number of seed control volumes, VCTi is the
umber of total control volumes necessary to fulfill the volume frac-
ion of the representative element in the whole computing domain
nd VCUi the number of control volumes occupied by one single
epresentative element. The index function (Is) that distributes the
eeds has the following general form:{

1, if 1 ≤ x ≤ NS

s(x) =

0, otherwise
(10)

he structure of representative elements is previously defined and
esigned pixel by pixel by a subroutine according to the known
orphological features of that element, to then be systematically
urces 196 (2011) 1248–1257 1251

generated around all seeds. The growth of the surroundings of rep-
resentative elements is controlled based on volume fractions as
described by Eq. (11):

E = |VR − VA|
VR

(11)

where E is the volume error that exist during the assignation, VA is
the assigned volume and VR the reference volume for the specific
phase. VR is obtained for each reconstructing phase. At the “inside
an agglomerate” scale, VR is obtained by Eqs. (3), (4) and (5) for plat-
inum, carbon and ionomer, respectively. At the “mesoporous” and
“agglomerate and micropores” scales, VR is obtained by Eq. (6). The
range of available adjacent FCVs (RID) for the expansion is limited
by the following function,

RID = VCT exp
(

E − 1
T

)
(12)

where VCT is the total number of FCVs in the sample domain and
T is a parameter that regulates the RID’s value, this is an empiri-
cal relation used to guarantee that VR converges to VA. The index
function (Ie) for this assignment is:

Ie(NI) =
{

1, if NI ≤ RID
0, otherwise

(13)

where NI is the random FCV’s index number. After the expansion,
the structure is characterized. The two-point correlation function
(S2) of a homogeneous medium can be obtained by randomly “toss-
ing” a line segment of r length with a specific orientation and
counting the number of times that the beginning (x) and the end
(x + r) of the line fall in phase j, as described by Eq. (14):

S2(x, r) =
〈

Ij(x)Ij(x + r)
〉

(14)

where the angular parenthesis refers to the statistical average when
the whole domain is evaluated and Ij is equal to 1 when the point
belongs to phase j as described by the following identity function:

Ij(x) =
{

1, if x is in the phase j
0, otherwise

(15)

Using orthogonal coordinates, the two-point correlation function
employed to characterize the generated structures becomes:

S2(r) = 1
3N2

⎡
⎣ N∑

j,k=1

S2,i(r) +
N∑

k,i=1

S2,j(r) +
N∑

i,j=1

S2,k(r)

⎤
⎦ (16)

where N is the computing domain cubic length and S2,i(r) is the
two-point correlation function along i direction (Eq. (17)),

S2,i(r) = 1
N − r

N−r∑
i=1

I(i, j, k) I(i + r, j, k) (17)

Similarly S2,j and S2,k can be defined.
The pore size is determined by the distribution of spheres of

different radii in the porous structure, where the pore radius is
equal to radius of the sphere that in its inside is formed by the
“empty” phase [42]. To avoid that large spaces are fractioned into
smaller spaces, the spheres’ radii begin to be modified from a max-
imum limit to unity. The characterized spaces are identified by the
following index function,{

Itp(x) = 0, if B ⊆ X

1, otherwise
(18)

where X represents the porous spaces and B the sphere. The maxi-
mum sphere’s radius is determined by a similar function evaluated
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Table 1
Dimensions of the domain and control volume for the studied scales.

Sample Nx = Ny = Nz (nm) dx = dy = dz (nm)

i
a

F

w
p
o
F
d

F

w
v
t
˚

2

r
b

J

w
w
c
i
e

∇
w
t
t
c
s
d
m

T
P

M3 300 3
M2 5000 50
M1 45,000 300

n the plane i–j along k. The pore size distribution in each sample
t different scale, is defined by Eq. (19),

ra,Mn = VPra,Mn

VPMn

(19)

here Fra,Mn is the volume fraction that characterizes the occu-
ied volume by pores of diameter ra(VPra,Mn ) over the total volume
ccupied by the empty space (VPMn ) in each of the Mn samples.
or scaling, this equation can be extended to find the pore size
istribution along the CL (Eq. (20)):

Tra (Fra,Mn ) = Fra,Mn

˚T
(˚i)

∏
(1 − ˚i−1) (20)

here FTra is the volume fraction that characterizes the occupied
olume by pores of diameter ra over the total occupied volume by
he empty phase in the whole CL; ˚T is the CL’s total porosity and

i the sample’s relative porosity. For example, when n = 1, ˚i−1 = 0.

.3. Effective ohmic conductivity

Ohm’s law relates the electric current (J) of a conducting mate-
ial directly to the applied voltage or potential (�E), as described
y Eq. (21),

= kA
�E

L
(21)

here k is the proportionality coefficient so-called conductivity
hich is a property of the material, A and L are area and length of

harge transport, respectively. By applying the continuity equation
n a medium discretized by FCV, the charge conservation transport
quation in a non-reactive system can be expressed by Eq. (22):

· (km∇�e) = 0 (22)

here km is the material’s conductivity and �e the applied poten-
ial. By solving the charge transport continuity equation directly in

he structural mesh, it is possible to obtain the average of all local
urrent flows (Ja), generated by the potential. Taking Eq. (21) and
ubstituting Ja, we can obtain the effective length to area of con-
uction ratio (Lmeff/Ameff = k(�e/Ja)). As it will be shown later, this
ethod, will simplify the structure scaling.

able 2
orosity of simulated structures.

˚T (%) ˚˚ (%) ˚M1 (%) ˚M2 (%)

0.50 D1 7.50 45.95
0.50 D2 10.00 44.44
0.50 D3 12.50 42.86
0.50 D4 15.00 41.18
0.40 D1 6.00 36.17
0.40 D2 8.00 34.78
0.40 D3 10.00 33.33
0.40 D4 12.00 31.82
0.30 D1 4.50 26.70
0.30 D2 6.00 25.53
0.30 D3 7.50 24.32
0.30 D4 9.00 23.08
0.20 D1 3.00 17.53
0.20 D2 4.00 16.67
0.20 D3 5.00 15.79
0.20 D4 6.00 14.89
ources 196 (2011) 1248–1257

The effective resistance (Reff) of a heterogeneous material, com-
posed by a conductive phase and one or more insulating phases,
is a function of the conductive material’s resistivity (�m), its effec-
tive area (Ameff) and its effective length (Lmeff) as described in the
following equation,

Reff = �m
Lmeff

Ameff
(23)

From a different angle, the Reff can be calculated as a function of the
effective resistivity (�meff) and the input data: area of the sample
(Am) and length of the sample (Lm), as described by Eq. (24),

Reff = �meff
Lm

Am
(24)

Using Eqs. (23) and (24) we can obtain �meff, which relates the effec-
tive resistivity of the whole sample with the resistivity, effective
length and effective area of conduction of the conductive phase,
Eq. (25),

�meff =
(

�m
Lmeff

Ameff

)
Am

Lm
(25)

As the effective resistivity characterizes the material by being an
intensive property and being able to be extended to find the resis-
tance of any continuous structure formed by the same material, this
equation can be generalized to find the resistivity of an element
formed by subdomains of smaller scales (Eq. (26)):

�meffT = �m

n∏
i=1

Lmeffi

Ameffi

n∏
i=1

Ami

Lmi

(26)

where �meffT is the effective resistivity of the global domain formed
by various smaller scale subdomains i; Lmeffi

is the effective length
and Ameffi

is the effective area of the phase under study in every
subdomain. Lmi

is the length and Ami
is the area of the sample of

every subdomain.
To normalize and generalize results, in this work calculated

resistivities are used to estimate a conduction efficiency (εk). As
conductivity is the inverse of resistivity, the CL’s effective conduc-
tivity is the inverse of the effective resistivity value kmeffT = �−1

meffT
.

εk is calculated by comparing the effective conductivity with the
nominal conductivity, as described by Eq. (27). By substituting Eq.
(26) in Eq. (27), we can obtain a relation that provides the conduc-
tion efficiency of the global domain (εkT

) which is formed by several
subdomains of smaller scale (Eq. (28)),

εk = kmeff

km
(27)

εkT
=

n∏
1

Ameffi

Lmeffi

n∏
1

Lmi

Ami

(28)

For example, to study the conduction efficiency with three scaling
levels the equation would be:

εkT
=

(
Ameff1 Ameff2 Ameff3

Lmeff1 Lmeff2 Lmeff3

)(
Lm1 Lm2 Lm3

Am1 Am2 Am3

)
(29)

Although in this work only the ohmic conduction efficiency will be
determined, other transport properties, such as thermal conduc-
tivity and diffusion coefficient, just to mention a couple of them,
could be determined under the same approach.
3. Simulation conditions

In this work we will determine the electronic and ionic conduc-
tion efficiency of a CL with different structural features: (1) ionomer
electrode load (ˇN) in the range of 20–80%wt; (2) CL porosity in
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Fig. 3. Two-point correlation function (S2) versus a non-dimensional distance (r/N)
for some representative structures at each studied scale. (a) shows S2 for the carbon
p
(
p
p

t
t
f
p
a
r
C
E
f

(

(

Fig. 4. Images of some reconstructed samples. (a) and (b) represent the M3 scale,
with ˇN equal to 20 and 60%, respectively, the blue color represents the carbon phase
and dark blue the ionomer phase. (c) and (d) represent the M2 scale, with ˚M2 equal
to 20 and 50%, respectively, the blue color represents the agglomerates and dark
hase at the M3 scale, where each curve corresponds to different ionomer loads

ˇN); (b) shows S2 for the agglomerates at the M2 scale; and (c) shows S2 for the
seudo-solid phase at the M1 scale. In (b) and (c) each curve corresponds to different
orosities (˚i).

he range of 20–50% and (3) pore size distribution by modifica-
ion of the relative porosity. All generated structures have the
ollowing characteristics: 20%wt Pt/C; 0.5 mg Pt cm−2; average Pt
article diameter, C diameter (ERC), agglomerate diameter (ERM)
nd mesopore diameter (ERP) of 3 nm, 50 nm, 500 nm and 600 nm,
espectively. Density of materials forming the solid structure: Pt,
and ionomer are 21,450, 1800 and 2000 mg cm−3, respectively.

ach one of the resulting structures is generated 10 times by dif-
erent random series and then their values are averaged.

Every CL is then studied at three different scales, namely:

a) Inside an agglomerate (M3), the phase’s reconstruction
sequence in the computing domain is: (i) carbon agglomerate
generation, (ii) platinum on carbon placement-generation, and

(iii) the rest is ionomer.

b) Agglomerates and micropores (M2), the reconstruction
sequence is: (i) agglomerate generation and (ii) the rest is
empty room.
blue the empty phase. (e) and (f) show the M1 scale with ˚M1 equal to 3 and 15%,
respectively, here the blue color represents the pseudo-solid phase and dark blue
the empty phase. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

(c) Mesopores (M1), reconstruction sequence is: (i) mesopore gen-
eration and (ii) the rest is a pseudo-solid structure.

Table 1 briefs the dimension of the computing domain (Nx, Ny

and Nz) and the FCVs (dx, dy and dz) for each of the scales (M). These
values are based on average diameters of representative elements
of the already mentioned scaling method.

In this work the pore size distribution is controlled indirectly by
defining the relative porosity of the so-called “mesoporous” scale
(˚M1 ) as a percentage of total porosity (Eq. (30)),

˚˚ = ˚M1

˚T
(30)
where ˚˚ is the total porosity percentage assigned to ˚M1 and
�T is the total electrode porosity. From a physical point of view,
˚˚ is directly proportional to the pore size distribution because it
determines the volume occupied by mesopores. It is worth men-
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ig. 5. Pore size distribution of reconstructed catalyst layers. (a), (b), (c) and (d) cor
˚ is modified.

ioning that the relative porosity of the M2 scale is conditioned by
q. (8). Table 2 specifies relative porosities used in this work, where
1, D2, D3 and D4 refer to ˚˚ equal to 0.15, 0.20, 0.25 and 0.30,

espectively.

. Results and discussion

The present methodology proposes the study of the following
Ls: 4 porosities, 4 pore size distributions and 13 different ionomer

oads (from 20 to 80 in steps of 5%). As each structure will be gen-
rated by ten different random series we will have a total of 2080
nalyzed structures. Using one single personal computer with 3 Gb
f RAM memory and a 2.4 GHz processor, the computing time is
f approximately 100 h, with the use of scaling, not including the
ime for establishing the problem and for the analysis of results.
he scaling method not only reduces computer processing time
ut also allows a detailed study of the CL at the nanoscale level.
he domain lattice of the cubic simple simulating the CL (M1) is
5,000 nm, while the lattice of the sample’s control volume detail-

ng the inside of an agglomerate (M3) is 3 nm. Without the scaling
echnique, the computing domain would need to be generated by
.375 × 1012 control volumes, which would make it impossible to
o with the previously mentioned computer.

.1. Characterization of reconstructed structures

Fig. 3 shows the two-point correlation function (S2) obtained for
ome representative structures at each studied scale. These values
re plotted versus a non-dimensional distance r/N, where r is the
istance between two points and N the domain lattice. In Fig. 3(a)
2 is shown when the carbon phase is analyzed at the M3 scale. Each

urve corresponds to a different ionomer loading (ˇN). In Fig. 3(b)
nd (c), S2 is calculated for the “pseudo-solid” phase at the M2 and
1 scales, respectively. In these last two figures, each curve cor-

esponds to different relative porosities. When r = 0, S2 represents
he volume fraction of the characterized phase. All correlation func-
nd to 20, 30, 40, and 50% of total porosity (˚T), respectively. The arrows show how

tions (S2) decay exponentially down to the squared volume fraction,
where its value is independent of r.

Fig. 4 shows representative images of reconstructed scales cor-
responding to S2 in Fig. 3. Fig. 4(a) and (b) correspond to the M3
scale, with a ˇN of 20 and 60%wt, respectively, where the blue color
represents the carbon phase and dark blue the ionomer phase.
Fig. 4(c) and (d) correspond to the M2 scale, with ˚M2 of 20 and
50%, respectively, where the blue color represents the agglomer-
ates and dark blue the empty phase. Fig. 4(e) and (f) show the M1
scale with ˚M1 3 and 15%, respectively, here the blue color rep-
resents the pseudo-solid phase and dark blue the empty phase. In
general the reconstructed structures look alike in the three planes
for each shown condition. Also at each scale it is clear the effect of
extreme values of: ionomer load at the M3 scale (Fig. 4(a) and (b))
and relative porosity at M2 (Fig. 4(c) and (d)) and M1 (Fig. 4(e) and
(f)) scales.

The pore size distribution in the CL is obtained using Eq. (20). The
resulting expressions, where only two samples contain the empty
phase, are:

FTra (Fra,M1 ) = Fra,M1

˚R
(˚1) (31)

FTra (Fra,M2 ) = Fra,M2

˚R
(˚2)(1 − ˚1) (32)

Fig. 5 shows the pore size distribution results calculated. Fig. 5(a),
(b), (c) and (d) correspond to 20, 30, 40, and 50% of total porosity,
respectively, for a hypothetical CL. In these plots one can observe
the pore size variation by normalizing ˚˚. From that figure it can
be seen that when ˚˚ decreases, the frequency of the ∼50 nm pore
size (left peak) increases while the frequency of the ∼300 nm pore
size (right peak) diminishes. An example of this behavior is seen in

Fig. 5(a) when ˚˚ = 0.30 (D4), FTr50 = 0.61 and FTr300 = 0.28 and
when ˚˚ = 0.15 (D1), FTr50 = 0.71 and FTr300 = 0.14. The arrows
in those figures point it out. These results are expected as ˚˚ is
directly proportional to the relative porosity of sample with a larger
scale, therefore when its value decreases the volume of those pores



R. Barbosa et al. / Journal of Power Sources 196 (2011) 1248–1257 1255

F
u

w
d
d
s
s

4

i
s
b
t
a
u
b
p
i
w
l
t
t

t
a
w
t
b
i
m
M
b
e
c

t
p
p
t
a
p

v
t
d

Fig. 7. Potential distribution (V) of the electronic conduction phase of some recon-
structed samples. (a) and (b) show potential distribution for the M3 scale, with ˇN

equal to 20 and 60%, respectively. (c) and (d) show the potential distribution for the
ig. 6. Schematics of the general boundary conditions for the charge transport sim-
lation of the cases studied at the different scales.

ith larger size decrease. These results confirm that the pore size
istribution of the CL was modified by the control of ˚˚. Such
istribution shows two peaks (at 0.05 �m and 0.3 �m), which are
trongly influenced by the carbon particle size and the mesopore
ize both introduced as input data.

.2. Electric and ionic transport coefficients

Fig. 6 shows the general boundary conditions (in 2D) used dur-
ng simulation of the cases studied at the different scales. As the
tructures are homogeneous, the side of the cubic domain that will
e assigned to the “flow current input” is not relevant, but clearly
he output should be located at the opposite side. At the input side,
1.1 V potential is specified exclusively on the FCV of the phase

nder study, while in the faces of FCV of the isolating phase the
oundary condition is a zero current flow. At the output a 1.0 V
otential is specified only for the phase under study, therefore hav-

ng a 0.1 V gradient. Other sides in the cubic domain are specified
ith a zero current flow condition. It must be mentioned that these

imiting values have the only purpose of determining the conduc-
ion efficiency and do not represent actual voltage distribution on
he different scales at the same time.

As the material’s resistivity does not affect results of the conduc-
ion efficiency (Eq. (28)), the phase under study is specified with an
rbitrary high conductivity (1000 S m−1) while the isolating phase
ith an arbitrary low conductivity (0.0001 S m−1). At the M1 scale

he phase under study is the pseudo-solid, at the M2 scale the phase
eing studied is the agglomerates and at both M1 and M2 scales, the

nsulating phase corresponds always to the empty phase. To deter-
ine the ionic conduction efficiency, the phase under study at the
3 scale is the ionomer and the insulating phase corresponds to

oth carbon and platinum. To determine the electronic conduction
fficiency, the phase under study at the M3 scale corresponds to
arbon and platinum, while the insulating phase is the ionomer.

Fig. 7 shows the potential distribution in volts within the elec-
ronic conduction phase for reconstructed CLs shown in Fig. 4. The
otential distribution is estimated using the boundary conditions
reviously mentioned, while the current flows are used exclusively
o calculate the conduction efficiency. The domains of Fig. 7(a)–(f)
re limited by an imaginary line and the potential distribution is
lotted exclusively in the electronic conduction phase.
Fig. 8 plots proton (a) and electronic (b) conduction efficiency
ersus different ionomer loadings in reconstructed CLs with 30%
otal porosity, where each curve represents a different pore size
istribution. In that figure it can be observed that the proton
M2 scale, with ˚M2 equal to 20 and 50%, respectively. (e) and (f) show the potential
distribution for the M1 scale with ˚M1 equal to 3 and 15%, respectively.

conduction efficiency increases, while the electronic conduction
efficiency diminishes, both in an exponential fashion, when ˇN

increases. This is an expected behavior as when ˇN grows what
really increases is the volume fraction of the ionomer phase while
the electronic conduction phase decreases inversely. On the other
hand, it is relevant to point out that the pore size distribution does
not affect the effective ionic or the effective electronic conduction
for the same ˇN value.

In Fig. 9 we show results obtained for proton (a) and elec-
tronic (b) conduction efficiency versus different total porosity in
reconstructed CLs now with 35% of ionomer loading. Each curve
represents a different pore size distribution and it can be noted that
both efficiencies electronic and ionic conduction decrease almost
linearly when the CL’s porosity increases. This trend is caused by
the smaller volume proportion of solid components (electronic and
ionic) when the porosity increases, which clearly affects the effec-
tive conductivity of the heterogeneous material. Also it should be
noticed that the slope for the electronic efficiency is different from
that for the ionic efficiency. As we shall see later, the decay rate
depends on ˇN. It can be noticed from these figures that the pore
size distribution does not affect the effective ionic or the effective
electronic conduction for the same ˇN value.

Finally, in Fig. 10 results obtained for the same properties as a

function of porosity are shown. As the pore size distribution does
not affect these results, conduction efficiency dependent on the
pore size distribution were averaged to be included in this analysis.
Besides the before mentioned trends, one can also observe that the
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ig. 8. Effect of ionomer load (ˇN) on proton conduction (a) and electronic con-
uction (b) efficiency of the reconstructed CLs with 30% porosity (˚T). Each curve
epresents different pore size distribution.
ecay rate of the proton conduction efficiency increases, while the
lectronic conduction efficiency diminishes when ˇN increases.

For the experimental validation of the present method the fol-
owing must be considered: (i) The microstructure reconstruction,
t each scale, should be made by a procedure that statistically

ig. 9. Effect of porosity (˚T) on proton conduction (a) and electronic conduction
b) efficiency of the reconstructed CLs with 35% ionomer load (ˇN). Each curve
epresents different pore size distribution.
Fig. 10. Effect of ionomer load (ˇN) on proton conduction (a) and electronic conduc-
tion (b) efficiency of the reconstructed CLs. Each curve represents different porosities
(˚T). The effect of the pore size distribution was averaged.

ensures the correct representation of the experimental structure.
(ii) The experimental effective transport coefficients should be
exclusive to the CL. This information is not currently available in the
literature. Nevertheless Boyer et al. [43] conducted an experimen-
tal study where the proton conductivity of a pseudo-CL is similar
to the results presented in this paper. It is noteworthy that exper-
imental validation is a current work in our laboratory and will be
published in the near future.

5. Conclusions

A technique to determine the effective electronic and ionic
conduction of a catalyst layer in a PEM fuel cell has been pro-
posed. The scaling approach can be applied to determine other
effective transport parameters of heterogeneous structures in CLs.
The mathematical relationships can be systematically applied to
determine effective coefficients of other processes such as ther-
mal conduction and mass diffusion. The proposed mesh generation
algorithm makes use of available information before and after the
CL fabrication and the generated structures are characterized by
two-point correlation functions and pore size distributions. The
scaling approach significantly reduces the computing hardware
requirement for the detailed study of nanoscale structures. Finally,
the techniques presented in this work can be applied to study
already existent CL microstructures as well as to propose new and
more efficient CLs.
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